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STATIC LONGITUDINAL CHARACTERISTICS OF THE 

PROJECT FIRE RFENTRY STAGE A.FTER REZXI”TY-PACKAGE SEPARATION 

AT MACH 28.3 I N  HELIUM 

By Curt is  D. Snyder 

SUMMARY 

An experimental force and moment invest igat ion has been conducted on a 
0.05-scale model of t h e  rocket motor case with adapters attached which w i l l  accel
e r a t e  an instrumented spacecraft  t o  37,000 f e e t  per  second during a fu ture  f l i g h t -
reentry program. The purpose of t h i s  invest igat ion w a s  t o  obtain data  which would 
a i d  i n  determining whether the  rocket motor would maintain adequate separation 
from t h e  reentry package during reentry.  The t e s t s  were conducted i n  helium a t  
a Mach number of 28.3 and a Reynolds number of 0.68 x 106 based on rocket-motor 
diameter. D a t a  were obtained over an angle-of-attack range from Oo t o  180’. 

High-speed schl ieren photography w a s  employed i n  an invest igat ion of anom
a l i e s  i n  t h e  data  a t  s p e c i f i c  angles of a t tack .  Discont inui t ies  i n  t h e  drag and 
pitching moment a re  shown t o  be caused by nearly instantaneous changes i n  t h e  
shock-wave pa t te rn  as the  a t t i t u d e  of t h e  model w a s  varied.  

INTRODUCTION 

Project F i r e  i s  a Langley Research Center project  formulated t o  f u r t h e r  
information concerning f l i g h t  reentry sciences associated with en t ry  i n t o  t h e  
e a r t h ’ s  atmosphere at hyperbolic v e l o c i t i e s .  B a l l i s t i c  f l i g h t  t e s t s  of rocket-
boosted instrumented spacecraft  a r e  planned t o  determine t o t a l  heat t ransfer ,  
ultra-high-temperature a i r  radiance, mater ia ls  response, and radio-blackout 
e f f e c t s .  The Project  F i r e  vehicle  consis ts  of a reentry package which i s  attached 
by an adapter t o  an Antares I1 (X-259) rocket motor. These components a re  
enclosed by a shroud and a guidance-unit s h e l l .  This assembly (designated veloc
i t y  package) w i l l  be launched on a b a l l i s t i c  t r a j e c t o r y  by an A t l a s  D first-stage 
launch vehicle.  P r i o r  t o  entering t h e  atmosphere, t h e  Antares motor w i l l  accel
e r a t e  t h e  reentry package t o  a veloci ty  of about 37,000 f e e t  per  second. After  
rocket-’motor burnout, t h e  reentry package w i l l  separate from t h e  Antares motor 
and en ter  t h e  atmosphere. After  t h e  i n i t i a l  separation of t h e  reentry package 
from t h e  rocket motor, both configurations w i l l  be outside t h e  sensible  atmosphere 
and w i l l  thus be following e s s e n t i a l l y  a b a l l i s t i c  t r a j e c t o r y .  Since both con
f igura t ions  w i l l  en te r  t h e  atmosphere only s l i g h t l y  separated and on t h e  same 
f l i g h t  path, some act ion must be i n i t i a t e d  t o  ensure t h e  separation necessary t o  
avoid c o l l i s i o n  and t o  f a c i l i t a t e  tracking. 
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I n  order t o  assess  t h e  seriousness of t h e  separat ion problem, it w a s  f irst  
necessary t o  inves t iga te  t h e  aerodynamic cha rac t e r i s t i c s  of t h e  rocket-motor case 
with t h e  adapters attached (i.e.,  t h e  Pro jec t  F i r e  reent ry  s tage a f t e r  reentry-
package separa t ion) .  

The t e s t s  f o r  determining t h e  forces  and moments on a 0.05-scale model of 
t h i s  configuration over an angle-of-attack range from 0' t o  180° were made i n  t h e  
Langley 22-inch helium tunnel  i n  support of t h e  ove ra l l  p ro jec t .  The configura
t ion,  shown as t h e  shaded por t ion  of figure 1, cons is t s  of t h e  Antares I1 (X-259) 
rocket motor with t h e  reent ry  package adapter and t h e  Antares adapter r i ng  
attached. The tes t  program w a s  conducted i n  helium at a Mach number of 28.3 and 
a Reynolds number of 0.68 x 106 based on rocket-motor diameter. The r e s u l t s  of 
t h e  present t e s t  program are presented herein.  

SYMBOLS 

A drawing showing pos i t i ve  d i rec t ions  of forces  and moments i s  presented i n  
f igu re  2. 

CA axial-force coeff ic ient ,  Total  a x i a l  force  
qs 

CD drag coef f ic ien t ,  CA cos a + CN s i n  a 

CL l i f t  coeff ic ient ,  CN COS a - CA s i n  a 

p i t  ching-moment coeff ic ient ,  
Pi tching moment 

qSD 

CN normal-force coeff ic ient ,  Normal force  
qs 

D diameter of rocket-motor case, 1.500 i n .  

M free-stream Mach number 

pt stagnation pressure, lb/sq i n .  

9 free-stream dynamic pressure, lb/sq i n .  

R Reynolds number based on rocket-motor diameter 

S rocket-motor case cross-sect ional  area, 1.767 sq i n .  

a angle of a t tack,  deg 

2 
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1I A P P W U S  AND TESTS 

The tes t  program w a s  performed i n  t h e  Langley 22-inch helium tunnel which i s  
shown i n  f igure  3 and described i n  reference 1. The 5' half-angle conical nozzle 
used employed a 0.548-inch-diameter interchangeable throa t .  This nozzle-throat 

I 	 combination gives an area r a t i o  s u f f i c i e n t  t o  obtain Mach numbers near 30 i n  the 
t e s t  regions. The r e s u l t s  of a survey performed t o  determine t h e  Mach number 
d i s t r i b u t i o n  i n  t h e  t e s t  region a r e  shown i n  f igure  4. The values of Mach number 
were calculated from total-pressure r a t i o s  obtained i n  t h e  horizontal  and v e r t i c a l  
posi t ions indicated by using t h e  computation procedure described i n  reference 2 
i n  conjunction with reference 3. The estimated accuracy of the Mach number i s  
ko.7 percent. Mach number d i s t r i b u t i o n s  were determined a t  t h r e e  longi tudinal  
posi t ions i n  t h e  t e s t  region and indicated flow charac te r i s t ic  of t h a t  generated 
by conical nozzles i n  tha t  both longi tudinal  gradients ( t h e  gradient f o r  Mach num
ber  w a s  0.09 per  inch) and flow divergence existed.  

A flow-angularity survey w a s  conducted t o  determine the  degree of divergence 
present i n  t h e  t e s t  section. The r e s u l t s  of t h i s  invest igat ion revealed t h a t  t he  
m a x i m u m  inc l ina t ion  of t h e  flow within t h e  high-speed core occupied by t h e  model 
w a s  l e s s  than 1.2O. 

All t e s t s  were conducted a t  a stagnation pressure automatically regulated 
a t  2,000 psig.  The t o t a l  temperature i n  t h e  s e t t l i n g  chamber remained e s s e n t i a l l y  
constant at 5150 R f o r  t h e  duration of t h e  t e s t s .  The Mach number a t  t h e  nose of 
t h e  model w a s  28.3 when t h e  model w a s  d i n e d  with t h e  flow. 

Forces and moments were measured with a sting-mounted strain-gage balance 
while t h e  model w a s  ro ta ted  i n  t h e  p i t c h  plane. The strain-gage-balance outputs 
were recorded automatically a t  predetermined a t t i t u d e s  by the  data-acquisit ion 
system described i n  reference 1. The angle-of-a,ttack range covered during each 
t e s t  w a s  36.50 at a r a t e  of about 3' per  second. The model w a s  ro ta ted  through 
t h i s  36.50 angle-of-attack range twice during each t e s t  (once i n  each d i rec t ion)  
i n  order t o  obtain substant ia t ing data .  Therefore two da ta  points  a r e  avai lable  
for a l l  values of angle of a t tack .  Both values a re  p lo t ted  and t h e  s c a t t e r  thus 
shown can be taken as ind ica t ive  of t he  overa l l  accuracy associated w i t h  the  
procedure used i n  t h i s  t e s t  program. 

A s l i g h t  temperature e f f e c t  exis ted during t h e  last  15 seconds of t h e  
25-second t e s t s .  This temperature e f f e c t  w a s  confined t o  t h e  axial-force outputs 
and w a s  accounted f o r  i n  t h e  data-reduction procedure. Base pressures were not 
measured since t h e  model w a s  continually ro ta ted  i n  pitch; t h e  e f f e c t  of base 
pressure i s  not expected t o  be la rge .  

MODEL 

Detai ls  of t h e  0.05-scale model a r e  given i n  f igure  5; the  model represents 
t h e  Project F i r e  reentry stage a f t e r  reentry-package separation. I n  order t o  
obtain d a t a  over t h e  angle-of-attack range from Oo t o  180°, it w a s  necessary t o  
construct th ree  models, a l l  i d e n t i c a l  except f o r  t h e  manner i n  which they were 
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supported by t h e  s t ing .  The a l t e r a t i o n s  necessary t o  mount the  model f o r  a 
specif ied angle-of-attack range a r e  shown i n  f i g u r e  6. Axial-force measurement 
a t  angles of a t t a c k  near TO0 w a s  affected by t h e  relocat ion of t h e  balance s t i n g  
assembly as i s  discussed subsequently i n  more d e t a i l .  A l l  models w e r e  constructed 
of aluminum and the  e x t e r i o r  surfaces w e r e  polished. 

RFSULTS AND DISCUSSION 

The basic  r e s u l t s  obtained from t h i s  invest igat ion a r e  presented i n  f i g 
ures  7 t o  9, and t h e  longitudinal-performance data  a r e  shown i n  f igures  10 and 11. 
Discont inui t ies  are evident i n  t h e  data  a t  angles of a t t a c k  near 133O and/or 148O. 
The anomalies prompted a photographic invest igat ion,  t h e  r e s u l t s  of which a r e  
discussed subsequently. 

Force and Moment Invest igat ion 

The var ia t ion  of axial-force coeff ic ient  and normal-force coeff ic ient  with 
angle of a t tack  i s  shown i n  f igures  7 and 8, respectively.  Except f o r  the  i r reg
u l a r i t i e s  i n  t h e  data  a t  a = 1 3 3 O  and a = 1480, these f igures  display t y p i c a l  
var ia t ions  i n  CN and CA. The presence of t h e  balance-sting assembly did a f f e c t  
a x i a l  force f o r  angles of a t tack  near TO0. A s  shown i n  f i g u r e  6, the  balance-
s t i n g  assembly w a s  located through t h e  nozzle of t h e  rocket-motor model f o r  
a 2 TO0; however, f o r  t h e  angle-of-attack range of 700 S a I llOo, t h e  balance-
s t i n g  assembly w a s  mounted perpendicular t o  t h e  model axis of symmetry. The d is 
agreement i n  CA near a = TO0 i s  a t t r i b u t e d  t o  t h e  difference i n  the  model-
balance geometry, and it i s  believed t h a t  t h e  axial-force da ta  f o r  TO0 5 a 2 110' 
are more correct  than those f o r  50° 2 a 5 TO0 because from purely geometrical 
considerations, t h e  perpendicular balance arrangement i s  more favorable. 

The e f f e c t s  of angle of a t tack  on pitching moment f o r  t h e  rocket-motor model 
a r e  presented as the  upper curve i n  f igure  9. For the  moment-reference center 
chosen (which i s  t h e  ant ic ipated center  of gravi ty  f o r  t h e  spent rocket motor 
with adapters a t tached) ,  t h e  experimental r e s u l t s  ind ica te  four  t r i m  points over 
t h e  angle-of-attack range from Oo t o  180~.Two of these  t r i m  points  were s table;  
t h e  s t a b i l i t y  a t  a = 16O w a s  l imited t o  a s m a l l  va r ia t ion  i n  angle of a t tack.  

The lower curve of f igure  9 i s  presented t o  attempt t o  explain t h e  e r r a t i c  
behavior of Cm indicated i n  t h e  upper curve. The rocket motor w a s  t e s t e d  with
out t h e  reentry-package adapter or t h e  Antares adapter f o r  comparable values of 
angle of a t tack.  Both configurations had idenkical  moment-reference centers 
when measured from the  r e a r  of the nozzle. Comparison of the  pitching-moment 
r e s u l t s  f o r  t h e  two configurations reveals t h a t  t h e  nonlinear t rends evident i n  
t h e  upper curve of f igure  9 a r e  a r e s u l t  of t h e  addi t ion of t h e  adapters; t h e  
detrimental  e f f e c t  on s t a b i l i t y  caused by t h e  addi t ion of such unconventional 
shapes i s  apparent. 

The var ia t ion  of l i f t  coeff ic ient  and drag coef f ic ien t  with angle of a t tack 
i s  presented i n  f igures  10 and 11, respectively.  The l i f t  r e s u l t s  ind ica te  an 
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approximately zero i n i t i a l  l i f t - cu rve  slope with m a x i m u m  l i f t i n g  force  developed 
near an angle of a t tack  of 570. The drag r e s u l t s  a r e  s i m i l a r  t o  t h e  normal-force 
r e s u l t s  with m a x i m u m  drag occurring near a = 8 5 O .  

Photographic Inves t iga t ion  

The extremely nonlinear t rends at values of angle of a t tack  near 133' and 
1 4 8 O  aroused considerable speculation concerning t h e  v a l i d i t y  of t h e  da ta  and the  
nature of t he  responsible flow phenomena. I n  addi t ion t o  the  da ta  t h a t  were 
sampled and p lo t t ed  at d i sc re t e  angles of a t tack,  a continuous record of t h e  
balance outputs w a s  m a d e  during each t e s t .  For those t e s t s  where t h e  model w a s  
ro ta ted  through t h e  a t t i t u d e s  i n  question (i.e.,  a = 1 3 3 O  and 1 4 8 O ) ,  t h e  abrupt 
s h i f t s  were observed on t h i s  record and a re  r e f l ec t ed  i n  t h e  f a i r i n g  of t h e  data. 

An inves t iga t ion  of t h e  flow phenomena responsible f o r  these  d i scon t inu i t i e s  
w a s  made by using high-speed sch l ie ren  motion p ic tures  of t h e  shock-wave pa t te rns .  
The r e s u l t s  of t h e  inves t iga t ion  corroborated the previous da ta  i n  t h a t  instan
taneous changes i n  shock-wave pa t te rn  were noted a t  t h e  same angle of a t t ack  
where t h e  da ta  exhibited abrupt s h i f t s .  These changes a re  shown i n  f igu re  12 
where consecutive frames a re  displayed. A sketch ( f i g .  13) i s  presented t o  
c l a r i f y  t h e  shock-wave pa t te rn .  The time i n t e r v a l  between frames i s  about 
113000 second. 

A s  t h e  angle of a t tack  of t h e  model w a s  increased near a = 1 3 3 O ,  pulsat ions 
developed i n  t h e  shock pa t te rns  as a r e s u l t  of t h e  hollow nozzle on t h e  rocket-
motor model. The frequency of t h e  pulsat ion remained constant, but t h e  amplitude 
(shock detachment d is tance)  increased u n t i l  an angle of a t tack  of about 1 4 8 O  was 
reached. The shock-wave pa t t e rn  then collapsed abrupt ly  and t h e  o s c i l l a t i o n s  
ceased. 

CONCLUDING REMARKS 

The s t a t i c  l ong i tud ina l - s t ab i l i t y  cha rac t e r i s t i c s  of a 0.05-scale model of 
t h e  Project  F i r e  reentry s tage a f t e r  separat ion from reentry package have been 
experimentally determined over t h e  angle-of-attack range f rom Oo t o  1 8 0 ~ .  The 
inves t iga t ion  w a s  conducted i n  helium at a Mach number of 28.3 and a Reynolds 
number of 0.68 x 106 based on rocket-motor diameter. 

The da ta  presented i n  t h i s  report  were obtained i n  order t h a t  it might be 
employed i n  a computer study of t h e  separat ion cha rac t e r i s t i c s  of t h e  reent ry  
package and the  spent rocket-motor case. Preliminary results from t h i s  computer 
study ind ica te  t h a t  t h e  longi tudina l  and cross-range displacements a re  influenced 
by a number of f ac to r s  and t h a t  t h e  minimum acceptable separation dis tances  
might be d i f f i c u l t  t o  ensure, co l l i s ion  being a p o s s i b i l i t y  i n  some cases. Based 
on t h e  r e s u l t s  of the separation study, t h e  system has been redesigned t o  main
t a i n  adequate separation. 
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A supplement t o  t h e  present inves t iga t ion  using high-speed schl ieren motion 
p i c tu re s  of abrupt d i scon t inu i t i e s  at angles of a t t ack  of 133O and 1480 was made 
t o  define t h e  responsible flow phenomena. The anomalies i n  t h e  forces  and/or 
moments at these  spec i f i c  angles of a t tack  a re  shown t o  be caused by instantaneous 
changes i n  t h e  shock-wave pa t t e rns  as t h e  a t t i t u d e  of t h e  model w a s  varied.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va. ,  October 10, 1963. 
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Figure 1.- Project F i r e  velocity package and Atlas adapter. 
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Figure 2.- Body-axis system. Posit ive directions indicated. 
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Figure 3 . - Langley 22-inch helium tunnel.  
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Figure 5.- Detailed model drawing. All dimensions in inches. 
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Figure 6.- Model-balance arrangements used t o  obtain 0' 6 a 5 180'. 



-- 

CA -,e Angle-of-attack range , 

investigated' p ~ a p k d l y  

0 IO 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 


0 ,  deg 


Figure 7.- Variation of axial-force coefficient with angle of attack. 
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Figure 8.- Variation of n o m - f o r c e  coefficient with angle of attack. 
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Figure 9.- Variation of pitching-moment coefficient with angle of attack. 
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Figure 10.- Variation of lift coefficient with angle of attack. 
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Figure 11.-Variation of drag coefficient with angle of attack. 



(a) a = 133'. (b) a = 148'. L-63-7513 

Figure 12.- High-speed photographs Of model at spec i f ic  a t t i tudes  (a increasing with time, 
counterclockwise). 

18 


-,-a-

-



Q N  148O 
cp-3.30 
Cm" .35 

Figure 13.- Sketch of flow phenomena. 


